Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Virol ; 96(7): e0010022, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1728835

RESUMEN

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets. Polymerase-enhancing variant PA-S321 airborne-transmitted and propagated in one ferret. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted by contact and airborne routes. With an efficient polymerase and a stable HA, the purified minor variant G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Overall, HA stabilization played a more prominent role than polymerase enhancement in the replication and transmission of these viruses in ferrets. The results suggest pandemic risk-assessment studies may benefit from deep sequencing to identify minor variants with human-adapted traits. IMPORTANCE Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility). Here, we used swine IAV isolates of the gamma lineage as a model to investigate the importance of HA stability and polymerase activity in promoting replication and transmission in ferrets. These are emerging viruses that bind to both α-2,6- and α-2,3-linked receptors. Using isolates containing mixed populations, a stabilized HA was selected within days in inoculated ferrets. An enhanced polymerase was also selected and propagated after airborne transmission to a ferret. Thus, HA stabilization was a stricter requirement, yet both traits promoted transmissibility. Knowing the viral traits needed for pandemic potential, and the relative importance of each, will help identify emerging viruses of greatest concern.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Estabilidad Proteica , Porcinos
2.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1624813

RESUMEN

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Asunto(s)
Adaptación Fisiológica/fisiología , Interacciones Huésped-Patógeno/fisiología , Subtipo H3N8 del Virus de la Influenza A/fisiología , Subtipo H3N8 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Animales , Aptitud Genética/fisiología , Caballos
3.
PLoS One ; 17(1): e0262832, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1643286

RESUMEN

Tumor progression locus 2 (Tpl2) is a serine/threonine kinase that regulates the expression of inflammatory mediators in response to Toll-like receptors (TLR) and cytokine receptors. Global ablation of Tpl2 leads to severe disease in response to influenza A virus (IAV) infection, characterized by respiratory distress, and studies in bone marrow chimeric mice implicated Tpl2 in non-hematopoietic cells. Lung epithelial cells are primary targets and replicative niches of influenza viruses; however, the specific regulation of antiviral responses by Tpl2 within lung epithelial cells has not been investigated. Herein, we show that Tpl2 is basally expressed in primary airway epithelial cells and that its expression increases in both type I and type II airway epithelial cells (AECI and AECII) in response to influenza infection. We used Nkx2.1-cre to drive Tpl2 deletion within pulmonary epithelial cells to delineate epithelial cell-specific functions of Tpl2 during influenza infection in mice. Although modest increases in morbidity and mortality were attributed to cre-dependent deletion in lung epithelial cells, no alterations in host cytokine production or lung pathology were observed. In vitro, Tpl2 inhibition within the type I airway epithelial cell line, LET1, as well as genetic ablation in primary airway epithelial cells did not alter cytokine production. Overall, these findings establish that Tpl2-dependent defects in cells other than AECs are primarily responsible for the morbidity and mortality seen in influenza-infected mice with global Tpl2 ablation.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Interacciones Microbiota-Huesped/genética , Virus de la Influenza A , Quinasas Quinasa Quinasa PAM/metabolismo , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Femenino , Quinasas Quinasa Quinasa PAM/genética , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Proteínas Proto-Oncogénicas/genética
4.
Cell Mol Immunol ; 19(2): 234-244, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1612184

RESUMEN

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a ß-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Humoral , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/virología , Chlorocebus aethiops , Citomegalovirus/inmunología , Perros , Femenino , Células HEK293 , Humanos , Inmunidad Celular , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología , Células Vero
5.
Cell Rep ; 37(6): 109961, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1507742

RESUMEN

Following infection or immunization, memory B cells (MBCs) and long-lived plasma cells provide humoral immunity that can last for decades. Most principles of MBC biology have been determined with hapten-protein carrier models or fluorescent protein immunizations. Here, we examine the temporal dynamics of the germinal center (GC) B cell and MBC response following mouse influenza A virus infection. We find that antiviral B cell responses within the lung-draining mediastinal lymph node (mLN) and the spleen are distinct in regard to duration, enrichment for antigen-binding cells, and class switching dynamics. While splenic GCs dissolve after 6 weeks post-infection, mLN hemagglutinin-specific (HA+) GCs can persist for 22 weeks. Persistent GCs continuously differentiate MBCs, with "peak" and "late" GCs contributing equal numbers of HA+ MBCs to the long-lived compartment. Our findings highlight critical aspects of persistent GC responses and MBC differentiation following respiratory virus infection with direct implications for developing effective vaccination strategies.


Asunto(s)
Anticuerpos Antivirales/inmunología , Centro Germinal/inmunología , Memoria Inmunológica , Virus de la Influenza A/fisiología , Células B de Memoria/inmunología , Infecciones por Orthomyxoviridae/inmunología , Proteínas de Dominio T Box/fisiología , Animales , Diferenciación Celular , Femenino , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología
6.
Sci Rep ; 11(1): 21259, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1493217

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without interference by the other. However, in immunohistochemical analyses, SARS-CoV-2 and IAV were not detected at the same sites in the respiratory organs of co-infected hamsters, suggesting that either the two viruses may have different cell tropisms in vivo or each virus may inhibit the infection and/or growth of the other within a cell or adjacent areas in the organs. Furthermore, a significant increase in IL-6 was detected in the sera of hamsters co-infected with SARS-CoV-2 and IAV at 7 and 10 days post-infection, suggesting that IL-6 may be involved in the increased severity of pneumonia. Our results strongly suggest that IAV co-infection with SARS-CoV-2 can have serious health risks and increased caution should be applied in such cases.


Asunto(s)
COVID-19/complicaciones , Infecciones por Orthomyxoviridae/complicaciones , Neumonía Viral/complicaciones , SARS-CoV-2 , Animales , COVID-19/patología , COVID-19/virología , Coinfección/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-6/sangre , Pulmón/diagnóstico por imagen , Pulmón/patología , Mesocricetus , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Replicación Viral
7.
Adv Sci (Weinh) ; 8(23): e2100118, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1482096

RESUMEN

Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.


Asunto(s)
Hemaglutininas/química , Vacunas contra la Influenza/administración & dosificación , Luz , Nanopartículas/química , Infecciones por Orthomyxoviridae/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Administración por Inhalación , Animales , Antígenos/administración & dosificación , Antígenos/química , Antígenos/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Hemaglutininas/administración & dosificación , Hemaglutininas/inmunología , Humanos , Inmunidad Celular , Inmunidad Humoral , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Fármacos Fotosensibilizantes/química , Polímeros/química
8.
Nat Commun ; 12(1): 5819, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1454763

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The continued spread of SARS-CoV-2 increases the probability of influenza/SARS-CoV-2 coinfection, which may result in severe disease. In this study, we examine the disease outcome of influenza A virus (IAV) and SARS-CoV-2 coinfection in K18-hACE2 mice. Our data indicate enhance susceptibility of IAV-infected mice to developing severe disease upon coinfection with SARS-CoV-2 two days later. In contrast to nonfatal influenza and lower mortality rates due to SARS-CoV-2 alone, this coinfection results in severe morbidity and nearly complete mortality. Coinfection is associated with elevated influenza viral loads in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevents severe disease and mortality. This protection is antibody-dependent. These data experimentally support the necessity of seasonal influenza vaccination for reducing the risk of severe influenza/COVID-19 comorbidity during the COVID-19 pandemic.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Coinfección/inmunología , Coinfección/virología , Inmunidad , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Antivirales/inmunología , COVID-19/patología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/genética , Pulmón/patología , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Regulación hacia Arriba/genética , Carga Viral/inmunología
9.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1388431

RESUMEN

Acute respiratory distress syndrome is associated with a robust inflammatory response that damages the vascular endothelium, impairing gas exchange. While restoration of microcapillaries is critical to avoid mortality, therapeutic targeting of this process requires a greater understanding of endothelial repair mechanisms. Here, we demonstrate that lung endothelium possesses substantial regenerative capacity and lineage tracing reveals that native endothelium is the source of vascular repair after influenza injury. Ablation of chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF2) (Nr2f2), a transcription factor implicated in developmental angiogenesis, reduced endothelial proliferation, exacerbating viral lung injury in vivo. In vitro, COUP-TF2 regulates proliferation and migration through activation of cyclin D1 and neuropilin 1. Upon influenza injury, nuclear factor κB suppresses COUP-TF2, but surviving endothelial cells ultimately reestablish vascular homeostasis dependent on restoration of COUP-TF2. Therefore, stabilization of COUP-TF2 may represent a therapeutic strategy to enhance recovery from pathogens, including H1N1 influenza and SARS-CoV-2.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Pulmón/citología , Pulmón/fisiología , Infecciones por Orthomyxoviridae/metabolismo , Regeneración/genética , Animales , Factor de Transcripción COUP II/genética , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/virología , Transfección
10.
Biomed Res Int ; 2021: 8112783, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1378089

RESUMEN

Long noncoding RNAs (lncRNAs) have been reported to participate in regulating many biological processes, including immune response to influenza A virus (IAV). However, the association between lncRNA expression profiles and influenza infection susceptibility has not been well elucidated. Here, we analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs among IAV-infected adult rat (IAR), normal adult rat (AR), IAV-infected junior rat (IJR), and normal junior rat (JR) by RNA sequencing. Compared with differently expressed lncRNAs (DElncRNAs) between AR and IAR, 24 specific DElncRNAs were found between IJR and JR. Then, based on the fold changes and P value, the top 5 DElncRNAs, including 3 upregulated and 2 downregulated lncRNAs, were chosen to establish a ceRNA network for further disclosing their regulatory mechanisms. To visualize the differentially expressed genes in the ceRNA network, GO and KEGG pathway analysis was performed to further explore their roles in influenza infection of junior rats. The results showed that the downregulated DElncRNA-target genes were mostly enriched in the IL-17 signaling pathway. It indicated that the downregulated lncRNAs conferred the susceptibility of junior rats to IAV via mediating the IL-17 signaling pathway.


Asunto(s)
Virus de la Influenza A/patogenicidad , MicroARNs/genética , Infecciones por Orthomyxoviridae/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Virus de la Influenza A/aislamiento & purificación , Interleucina-17/genética , Interleucina-17/inmunología , MicroARNs/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Largo no Codificante/inmunología , ARN Mensajero/inmunología , Ratas , Ratas Sprague-Dawley
11.
Viruses ; 13(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1376994

RESUMEN

Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.


Asunto(s)
Modelos Animales de Enfermedad , Tupaia , Virosis , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/virología , Animales , COVID-19/virología , Dengue/inmunología , Dengue/patología , Dengue/virología , Infecciones por VIH/virología , Hepatitis B/inmunología , Hepatitis B/virología , Hepatitis C/inmunología , Hepatitis C/patología , Hepatitis C/virología , Herpes Simple/patología , Herpes Simple/virología , Humanos , Gripe Humana/inmunología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
12.
Viruses ; 13(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1208346

RESUMEN

Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.


Asunto(s)
Hurones/virología , Inmunidad , Infecciones por Orthomyxoviridae/virología , Factores de Edad , Animales , Femenino , Humanos , Vacunas contra la Influenza , Embarazo , Factores de Riesgo , Vacunación
13.
Life Sci ; 280: 119744, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1281492

RESUMEN

Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.


Asunto(s)
Nanopartículas/química , Polímeros/química , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/virología , Vacunación , Vacunas Virales/administración & dosificación , Animales , COVID-19/prevención & control , COVID-19/virología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Portadores de Fármacos/química , Humanos , Gripe Humana/prevención & control , Gripe Humana/virología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Vacunación/métodos , Vacunas Virales/uso terapéutico
14.
Virulence ; 12(1): 1111-1121, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1243446

RESUMEN

Coronaviruses and influenza viruses are circulating in humans and animals all over the world. Co-infection with these two viruses may aggravate clinical signs. However, the molecular mechanisms of co-infections by these two viruses are incompletely understood. In this study, we applied air-liquid interface (ALI) cultures of well-differentiated porcine tracheal epithelial cells (PTECs) to analyze the co-infection by a swine influenza virus (SIV, H3N2 subtype) and porcine respiratory coronavirus (PRCoV) at different time intervals. Our results revealed that in short-term intervals, prior infection by influenza virus caused complete inhibition of coronavirus infection, while in long-term intervals, some coronavirus replication was detectable. The influenza virus infection resulted in (i) an upregulation of porcine aminopeptidase N, the cellular receptor for PRCoV and (ii) in the induction of an innate immune response which was responsible for the inhibition of PRCoV replication. By contrast, prior infection by coronavirus only caused a slight inhibition of influenza virus replication. Taken together, the timing and the order of virus infection are important determinants in co-infections. This study is the first to show the impact of SIV and PRCoV co- and super-infection on the cellular level. Our results have implications also for human viruses, including potential co-infections by SARS-CoV-2 and seasonal influenza viruses.


Asunto(s)
Células Epiteliales/virología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Coronavirus Respiratorio Porcino/fisiología , Interferencia Viral , Animales , Antígenos CD13/metabolismo , Células Cultivadas , Coinfección/virología , Infecciones por Coronavirus/virología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Inmunidad Innata , Infecciones por Orthomyxoviridae/virología , Porcinos , Tráquea/citología , Replicación Viral
15.
Signal Transduct Target Ther ; 6(1): 200, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1237988

RESUMEN

Influenza A virus may circulate simultaneously with the SARS-CoV-2 virus, leading to more serious respiratory diseases during this winter. However, the influence of these viruses on disease outcome when both influenza A and SARS-CoV-2 are present in the host remains unclear. Using a mammalian model, sequential infection was performed in ferrets and in K18-hACE2 mice, with SARS-CoV-2 infection following H1N1. We found that co-infection with H1N1 and SARS-CoV-2 extended the duration of clinical manifestation of COVID-19, and enhanced pulmonary damage, but reduced viral shedding of throat swabs and viral loads in the lungs of ferrets. Moreover, mortality was increased in sequentially infected mice compared with single-infection mice. Compared with single-vaccine inoculation, co-inoculation of PiCoVacc (a SARS-CoV-2 vaccine) and the flu vaccine showed no significant differences in neutralizing antibody titers or virus-specific immune responses. Combined immunization effectively protected K18-hACE2 mice against both H1N1 and SARS-CoV-2 infection. Our findings indicated the development of systematic models of co-infection of H1N1 and SARS-CoV-2, which together notably enhanced pneumonia in ferrets and mice, as well as demonstrated that simultaneous vaccination against H1N1 and SARS-CoV-2 may be an effective prevention strategy for the coming winter.


Asunto(s)
COVID-19 , Coinfección , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Coinfección/inmunología , Coinfección/patología , Coinfección/virología , Modelos Animales de Enfermedad , Hurones , Humanos , Masculino , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología
16.
Cells ; 10(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1232574

RESUMEN

Despite vaccination and antivirals, influenza remains a communicable disease of high burden, with limited therapeutic options available to patients that develop complications. Here, we report the development and preclinical characterization of Adipose Stromal Cell (ASC) concentrated secretome (CS), generated by process adaptable to current Good Manufacturing Practices (cGMP) standards. We demonstrate that ASC-CS limits pulmonary histopathological changes, infiltration of inflammatory cells, protein leak, water accumulation, and arterial oxygen saturation (spO2) reduction in murine model of lung infection with influenza A virus (IAV) when first administered six days post-infection. The ability to limit lung injury is sustained in ASC-CS preparations stored at -80 °C for three years. Priming of the ASC with inflammatory factors TNFα and IFNγ enhances ASC-CS ability to suppress lung injury. IAV infection is associated with dramatic increases in programmed cell death ligand (PDL1) and angiopoietin 2 (Angpt2) levels. ASC-CS application significantly reduces both PDL1 and Angpt2 levels. Neutralization of PDL1 with anti-mouse PDL1 antibody starting Day6 onward effectively ablates lung PDL1, but only non-significantly reduces Angpt2 release. Most importantly, late-phase PDL1 neutralization results in negligible suppression of protein leakage and inflammatory cell infiltration, suggesting that suppression of PDL1 does not play a critical role in ASC-CS therapeutic effects.


Asunto(s)
Tejido Adiposo/citología , Virus de la Influenza A/fisiología , Lesión Pulmonar/terapia , Lesión Pulmonar/virología , Infecciones por Orthomyxoviridae/terapia , Infecciones por Orthomyxoviridae/virología , Angiopoyetina 2/metabolismo , Animales , Antígeno B7-H1/metabolismo , Lavado Broncoalveolar , Criopreservación , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/complicaciones , Inflamación/patología , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Masculino , Ratones , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/patología , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Caracteres Sexuales , Células del Estroma/metabolismo
17.
Viruses ; 13(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1231504

RESUMEN

Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.


Asunto(s)
Adyuvantes Inmunológicos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Ensayos Clínicos como Asunto , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Inmunidad Humoral , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Vacunas de Partículas Similares a Virus/inmunología
18.
Biochem Biophys Res Commun ; 556: 87-92, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1173393

RESUMEN

Virus-induced cytokine storm has been a devastating actuality in clinic. The abnormal production of type I interferon (IFN-1) and upregulation of multiple cytokines induced strong inflammation and thus lead to shock and organ failure. As an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37) regulates the ubiquitination of multiple proteins including TRAFs. RNA sequencing was performed to investigated the alteration of transcriptional profile of H1N1-infected patients. qRT-PCR assay was performed to investigate the RNA levels of certain genes. The group of immune cells was examined by the Flow cytometry analysis. H&E staining was applied to evaluate lung inflammation of WT and TRIM37-KO mice. ELISA assay was performed to demonstrate the alteration of multiple cytokines. The protein levels in NF-kB signaling was estimated by western blotting and immunoprecipitation assays were applied to demonstrate the direct interaction between TRIM37 and TRAF-6. The RNA level of TRIM37 decreased in CD11b+ cells of Flu-infected patients. Knockout of TRIM37 inhibited the immune responses of H1N1-infected mice. TRIM37 deficiency reduced the levels of virous proinflammatory cytokines in bone marrow derived macrophages (BMDMs). Mechanically, TRIM37 promoted the K63-linked ubiquitination of TRAF6. TRIM37 negatively regulated inflammatory responses induced by virus infection via promoting TRAF6 ubiquitination at K63.


Asunto(s)
Inflamación/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Femenino , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/metabolismo , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Factor 6 Asociado a Receptor de TNF/química , Proteínas de Motivos Tripartitos/deficiencia , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
19.
J Ethnopharmacol ; 275: 114063, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1164034

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-Yinhua-Jiedu Granules (FFYH) optimized from a Yin-Qiao-San, as traditional Chinese medicine (TCM), was used to treat influenza and upper respiratory tract infection and was recommended for the prevention and treatment of SARS in 2003 and current COVID-19 in Anhui Province in 2020. AIM OF STUDY: In the clinical studies, FFYH was very effective for the treatment of influenza, but the mechanism of action against influenza A virus remains unclear. In the present study, we investigated the antiviral effect of FFYH against influenza A virus in vitro and vivo. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was investigated for the first time. MATERIALS AND METHODS: CPE inhibition assay and HA assay were used to evaluate the in vitro antiviral effects of FFYH against influenza A virus H1N1, H3N2, H5N1, H7N9 and H9N2. Mice were used to evaluate the antiviral effect of FFYH in vivo with ribavirin and lianhuaqingwen as positive controls. RT-PCR was used to quantify the mRNA transcription of TNF-α, IL-6, IFN-γ, IP10, and IL-1ß mRNA. ELISA was used to examine the expression of inflammatory factors such as TNF-α, IL-6, IFN-γ, IP10, and IL-1ß in sera. The blood parameters were analyzed with auto hematology analyzer. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was also investigated. RESULTS: FFYH showed a broad-spectrum of antiviral activity against H1N1, H3N2, H5N1, H7N9, and H9N2 influenza A viruses. Furthermore, FFYH dose-dependently increased the survival rate, significantly prolonged the median survival time of mice, and markedly reduced lung injury caused by influenza A virus. Also, FFYH significantly improve the sick signs, food taken, weight loss, blood parameters, lung index, and lung pathological changes. Moreover, FFYH could markedly inhibit the inflammatory cytokine expression of TNF-α, IL-6, IFN-γ, IP10, IL-10, and IL-1ß mRNA or protein via inhibition of the TLR7/MyD88/NF-κB signaling pathway in vivo. CONCLUSION: FFYH not only showed a broad-spectrum of anti-influenza virus activity in vitro, but also exhibited a significant protective effect against lethal influenza virus infection in vivo. Furthermore, our results indicated that the in vivo antiviral effect of FFYH against influenza virus may be attributed to suppressing the expression of inflammatory cytokines via regulating the TLR7/MyD88/NF-κB signaling pathway. These findings provide evidence for the clinical treatment of influenza A virus infection with FFYH.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Medicamentos Herbarios Chinos/farmacología , Virus de la Influenza A/efectos de los fármacos , Pulmón/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Receptor Toll-Like 7/metabolismo , Células A549 , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/metabolismo , Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Transducción de Señal , Replicación Viral/efectos de los fármacos
20.
Trends Microbiol ; 29(7): 573-581, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1130313

RESUMEN

Emerging zoonotic diseases exert a significant burden on human health and have considerable socioeconomic impact worldwide. In Asia, live animals as well as animal products are commonly sold in informal markets. The interaction of humans, live domestic animals for sale, food products, and wild and scavenging animals, creates a risk for emerging infectious diseases. Such markets have been in the spotlight as sources of zoonotic viruses, for example, avian influenza viruses and coronaviruses, Here, we bring data together on the global impact of live and wet markets on the emergence of zoonotic diseases. We discuss how benefits can be maximized and risks minimized and conclude that current regulations should be implemented or revised, to mitigate the risk of new diseases emerging in the future.


Asunto(s)
Comercio/normas , Enfermedades Transmisibles Emergentes/etiología , Alimentos , Infecciones por Orthomyxoviridae/transmisión , Zoonosis/transmisión , Animales , Asia , Aves/virología , COVID-19/transmisión , COVID-19/virología , Comercio/legislación & jurisprudencia , Comercio/métodos , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/virología , Aglomeración , Humanos , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Zoonosis/clasificación , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA